Edge 2-rainbow domination number and annihilation number in trees
نویسنده
چکیده مقاله:
A edge 2-rainbow dominating function (E2RDF) of a graph G is a function f from the edge set E(G) to the set of all subsets of the set {1,2} such that for any edge.......................
منابع مشابه
bounding the rainbow domination number of a tree in terms of its annihilation number
a {em 2-rainbow dominating function} (2rdf) of a graph $g$ is a function $f$ from the vertex set $v(g)$ to the set of all subsets of the set ${1,2}$ such that for any vertex $vin v(g)$ with $f(v)=emptyset$ the condition $bigcup_{uin n(v)}f(u)={1,2}$ is fulfilled, where $n(v)$ is the open neighborhood of $v$. the {em weight} of a 2rdf $f$ is the value $omega(f)=sum_{vin v}|f (v)|$. the {em $2$-r...
متن کاملOuter independent Roman domination number of trees
A Roman dominating function (RDF) on a graph G=(V,E) is a function f : V → {0, 1, 2} such that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. An RDF f is calledan outer independent Roman dominating function (OIRDF) if the set ofvertices assigned a 0 under f is an independent set. The weight of anOIRDF is the sum of its function values over ...
متن کاملBounding the Rainbow Domination Number of a Tree in Terms of Its Annihilation Number
A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V (G) to the set of all subsets of the set {1, 2} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition ⋃ u∈N(v) f(u) = {1, 2} is fulfilled, where N(v) is the open neighborhood of v. The weight of a 2RDF f is the value ω(f) = ∑ v∈V |f(v)|. The 2-rainbow domination number of a graph G, denoted by γr2...
متن کاملOn trees with total domination number equal to edge-vertex domination number plus one
An edge e ∈ E(G) dominates a vertex v ∈ V (G) if e is incident with v or e is incident with a vertex adjacent to v. An edge-vertex dominating set of a graph G is a set D of edges of G such that every vertex of G is edgevertex dominated by an edge of D. The edge-vertex domination number of a graph G is the minimum cardinality of an edge-vertex dominating set of G. A subset D ⊆ V (G) is a total d...
متن کاملCharacterization of trees with equal 2-domination number and domination number plus two
Let G = (V (G), E(G)) be a simple graph, and let k be a positive integer. A subset D of V (G) is a k-dominating set if every vertex of V (G) − D is dominated at least k times by D. The k-domination number γk(G) is the minimum cardinality of a k-dominating set of G. In [5] Volkmann showed that for every nontrivial tree T, γ2(T ) ≥ γ1(T ) + 1 and characterized extremal trees attaining this bound....
متن کاملSome Results on the Maximal 2-Rainbow Domination Number in Graphs
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 17
صفحات 115- 120
تاریخ انتشار 2019-04-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023